
Cool Methodology

14-12 COOL User’s Manual

Error
Verify_Error
System_Error

Fatal
System_Signal

Excp_Handler
Jump_Handler

Hash_Table
Set
Hash_Table<Key,Value>

Package
Matrix

Matrix<Type>
Queue

Queue<Type>
Random
Stack

Stack<Type>
Symbol
Binary_Node

Binary_Node<Type>
Binary_Tree

Binary_Tree<Type>
AVL_Tree<Type>

N_Node<Type>
D_Node<Type>
N_Tree<Type,Node,nchild>

Cool Methodology

14-11COOL User’s Manual

symbol entry, providing an efficient and convenient means for internationalizing the
text messages in an application.

Regression Test 14.8.7 Each new or modified class contained in or added to COOL
Suite must also include a stand-alone test program. This should fully exercise all features and

functions and report success or failure through the test macros contained in the ~COOL/
include/test.h header file. This test program is used in regression tests for new re-
leases and ports to other software platforms to ensure a complete and working
implementation.

Source Code 14.8.8 COOL places great importance upon system-independent code
System Independence and features. As such, system-specific functions should be surrounded with #if

preprocessor directives where appropriate. In general, small performance sacrifices in
implementation are preferred if system independence and portability is improved.

Build Procedure 14.8.9 COOL contains a modified imake utility from the MIT X11R3 source tape that
implements a system-independent build procedure. This should be used for all new
classes and source code. imake provides configuration and rules files for localization or
customization of system build utilities and commands to aid in porting activities to
other operating systems and hardware platforms.

Class Hierarchy 14.9 The COOL class hierarchy implements a flat inheritance tree, as opposed to the

nested SmallTalk model. Most COOL classes are derived from Generic to facilitate run
time type checking and object query. Simple classes are not derived from Generic due
to memory-space efficiency concerns. All parameterized container classes inherit from
a base class that results in shared type-independent code. This reduces code replication
when a particular type of container is parameterized several times for different objects
in a single application. The COOL hierarchy is:

Pair<T1,T2>
Range

Range<Type>
Rational
Complex
Bignum
Generic

String
Gen_String
Regexp
Vector

Vector<Type>
Association<T1,T2>

List_Node
List_Node<Type>

List
List<Type>

Date_Time
Timer
Bit_Set
Exception

Warning

Cool Methodology

14-10 COOL User’s Manual

Private, Protected, 14.8.3 In general, class data should be encapsulated in either the private
and Public or protected sections. Data specific to a particular class with no use for possible derived

classes should be located in the private section. Data located in the protected section
might include configuration or adjustment data members that a derived class might
want to monitor or change. No COOL classes contain public data, and the user should
not declare such data. Aside from being bad object-oriented programming style, classes
with public data may be difficult to make persistent and stored in an OODB. The one
exception to this standard are the derived exception classes, which may require public
data members in order to allow query or update of alternate values.

Documentation 14.8.4 Documentation of all files is very important. Terseness should be the general
rule for all header files, and completeness the rule for all code files. Parameterized tem-
plates have a single header/source file and all documentation should be located there. If
in doubt, more documentation is better than less documentation. A high-level abstract at
the top of each file should provide a description of the file’s functionality. Class header
files should also contain a brief description of the public interface.

Each function in a source code file should have a preceding block comment specifying
the input and output parameters as well as giving a brief synopsis of the functionality.
For complex inline definitions in header files, a block comment of this type should only
be used when the purpose is not obvious because these comments do not appear in the
code file. Since most inline functions contain trivial code (usually providing an accessor
to some private data member), comment requirements for inline function can be re-
laxed.

All source code should be commented every few source lines. Specifically, large block
comments every 100 lines is unacceptable. No comment should contain operating sys-
tem specific names or terms unless that section of code is truly specific. When this is
necessary, the code should be surrounded by conditional compilation constructs. These
are handled by the preprocessor relative to that specific operating system.

Finally, documentation in the form of a man page should be written for every class.
Layout and organization will be as that with the –man macro package available for
nroff(1)/troff(1). Section names and requirements for a class man page include Name,
Synopsis, Base Class, Friend Classes, Description, Constructors (public or protected as
necessary), Protected Member Functions (when appropriate), Public Member Func-
tions, Files, See Also, and Bugs (when necessary). Introductory and high-level material
should also be documented.

Source Code 14.8.5 Indentation and source code structure is relaxed, but it is suggested
Indentation that the programmer use the C++ mode available for GNU Emacs and supplied with

COOL. In general, statements should be restricted to one line with indentation reflect-
ing block and scoping visibility. Location of such items as braces, spacing around pa-
rentheses, and so on is left up to the programmer. If the C++ mode is used, whole
regions can be marked and indented appropriately, providing a simple means by which
all source code can be brought into the same format.

Error Message 14.8.6 All error message text strings in an application should use the
Resource Package ERR_MSG package available in COOL. The COOL exception handling scheme auto-

matically uses this package ensuring that all text strings associated with error messages
are stored as the value of a symbol (see Section 13). All error message symbols are auto-
matically processed and located in one file, thus facilitating easy update or configura-
tion. In particular, a language translation can be added to the property list of each

Cool Methodology

14-9COOL User’s Manual

• Constants (const) declarations should be uppercase:

const int FALSE=0;

const int TRUE=!FALSE;

Class Header 14.8.2 All header files defining the structure of a class or parameterized
File Organization template should be organized into sections in the following order:

• Included files and typedefs necessary for the class.

• Definition of private data members.

• Declaration of private member functions and friends.

• Definition of protected data members.

• Declaration of protected member functions and friends.

• Declaration of public member functions and friends.

• Inline member functions of the class follow the class definition.

• Other member and friend function definitions are located in a separate source code
file.

In general, only the data member definitions and function prototypes of the member
functions and friend functions should appear in the class construct. This separates the
implementation from the specification and reduces clutter. Define inline functions after
the class {...}; statements. In addition, the keyword inline should appear in both the
class definition and in the actual implementation as a documentation aid. The optional
private keyword should be explicitly stated. Finally, avoid multiple instances of
scoped sections. There should be no more than one each of the private, protected, and
public labels.

Cool Methodology

14-8 COOL User’s Manual

• Regression test suite — All modified and new C++ classes added to the COOL
library should contain a complete, stand-alone test program that exercises all major
features of the component and reports successes and failures via the test macros
contained in the ~COOL/include/test.h header file.

• Source code system independence — COOL places great importance upon system-
independent code and features. As such, system-specific functions should be sur-
rounded with preprocessor directives where appropriate.

• Build procedure — COOL contains a modified imake utility from the MIT X11R3
source tape that implements a system-independent build procedure. This should be
used for all new classes and source code. It also provides configuration and rules
files for localization or customization of system build utilities and commands to
port to other operating systems and hardware platforms.

Naming 14.8.1 A prime objective for a naming convention is to allow programmers
Conventions to recognize what sort of component a name refers to. Another goal is using meaningful

names, which has not typically been done in C applications. The following naming con-
ventions are used throughout the COOL source code. The reader is strongly encouraged
to follow the same guidelines:

• Directory, .C, and .h filenames should be the same or close to the class being de-
fined, and the declaration and implement files should be in a single directory. For
example, the String class is defined and implemented in the files String.h and
String.C and contained in the ~COOL/String subdirectory.

• Class, struct, and typedef names should be capitalized with the words separated
by underscores:

class Generic_Window { ... };

struct String_Layout { ... };

typedef int Boolean;

• All function names should be lowercase with each word separated by an underscore
character:

void my_fun (int foo);

char* get_name (ostream&);

• Predicate functions should begin with is_:

Boolean is_type_of (int);

• Variable and data member names should be lowercase with words separated by
underscores:

int ref_count;

char* name;

• Global and static variables should be appended with _g or _s, respectively:

int node_count_g;

static char* version_s;

• Preprocessor statements and MACRO names should be uppercase:

#define ABS ((x < 0) ? (–x) : x)

Cool Methodology

14-7COOL User’s Manual

There are six predefined exception type classes provided as part of COOL. The excep-
tion class is the base class from which specialized exception subclasses are derived. De-
rived from Exception are Warning, System_Signal, Fatal and Error. From the
Error class, the System_Error and Verify_ Error classes are derived. The default
exception handlers are called only if no other exception handler is established and avail-
able when an exception is raised. COOL offers users the option of defining their own
exception types. Such types can be derived from the Exception class of one of the de-
rived exception types. All user-defined exception classes should have public data slots.
For more detailed information on creating your own exception types, refer to Section
13, Exception Handling.

The COOL exception handling facility provides several macros that simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro allows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAISE macro, ex-
cept that it guarantees to end the program if the exception is not handled. The VERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finally, the IGNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

Coding Style and 14.8 A standard source code style allows several programmers to easily

Conventions maintain and understand each other’s code because additional semantic information can

be inferred from the source code’s format and style. In addition, a single style presents a
more coherent, professional software package for potential source code users. This is
particularly important for COOL, since parameterized templates require complete ac-
cess to all source code. Finally, one of the foundations of object-oriented programming
is code reuse. This is much easier if a programmer is able to browse through source code
and understand its organization and layout. The COOL source code adopts the follow-
ing C++ coding style convention:

• Variable and class naming conventions — A proposed definition for naming con-
ventions for variables and classes and a coding style for writing C++ class defini-
tions.

• Organization and contents of class header files — An ordering for all of the ele-
ments in a C++ class library. A uniform organization for C++ class definition ele-
ments will simplify a user’s task in learning the interface of a class and in locating
information when making later references to the class.

• Private/Protected/Public data members — Recommended usage for scoping data
members in a class with respect to encapsulation, derivation, and an object-ori-
ented data base (OODB).

• Source code documentation — Minimum standards and requirements consisting of
at least an introductory, high-level algorithmic discussion and input/output docu-
mentation for each function.

• Source code indentation and layout — A flexible and easy to follow indentation
and layout proposal, facilitated in part by a C++ mode distributed with COOL
source code for the popular GNU Emacs editor.

• Error message text resource package — Use of the COOL exception handling
mechanism provide a package containing all error messages in an application that
eases internationalization of text message strings.

Cool Methodology

14-6 COOL User’s Manual

The member functions added by Generic and the class macro to derived COOL classes
manipulate symbols stored in the global SYM package. These symbols reflect the inheri-
tance tree for a specific class. They may have optional property lists containing infor-
mation associating supported member functions and their respective argument lists.
User-defined classes derived from Generic are also automatically supported in an iden-
tical fashion, resulting in additional symbols in the global symbol package. As dis-
cussed earlier, these symbols must have storage allocated for them and code to initialize
the package at program startup time. This is managed by the COOL file symbols.C
which should be compiled and linked with every application that uses COOL. An auto-
mated method for ensuring correct package setup and symbol initialization is accom-
plished by establishing the correct dependency in an application make file.

Exceptions 14.7 In COOL, program anomalies are known as exceptions. An exception can be an

error, but it can also be a problem such as impossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code. The COOL exception handling scheme is a raise, handle, and
proceed mechanism similar to the Common Lisp Condition Handling system. When a
program encounters an anomaly that is often (but not necessarily) an error, it can:

• Represent the anomaly in an object called an exception

• Announce the anomaly by raising the exception

• Provide solutions to the anomaly by defining and establishing handlers

• Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, System_Error, System_Signal, and Verify_Error), and a
set of predefined exception handler functions. In addition, the macros EXCEPTION,
RAISE, STOP, and VERIFY allow the programmer to easily create and raise an ex-
ception at any point in a program.

When an exception is raised (through macros RAISE or STOP, for example), a search
begins for an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on the global exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception. Handling an exception means proceeding from the exception. An excep-
tion handler function could report the exception to standard error and end the program,
or drop a core image for further debugging by the programmer. Another way of pro-
ceeding is to query the user for a fix, store the fix in the exception object, and return to
where the exception was raised. When an exception handler object is declared, is is
placed on the top of a global exception handler stack. When an exception is raised, a call
searches for a handler. The handler search starts at the top of the exception handler
stack.

Cool Methodology

14-5COOL User’s Manual

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, run time symbolic objects,
and dynamic packages. This is facilitated by the Generic class that, combined with
macros, symbols, and packages, provides efficient run-time object type checking, ob-
ject query, and enhanced polymorphic management unavailable in the C++ language.

The Generic class is inherited by most other COOL classes and manipulates lists of
symbols to manage type information. Generic adds run-time type checking and object
queries, formatted print capabilities, and a describe mechanism to any derived class.
The COOL class macro (discussed below) automatically generates the necessary imple-
mentation code for these member functions in the derived classes. A significant benefit
of this common base class is the ability to declare heterogeneous container classes
parameterized over the Generic* type. These classes, combined with the current posi-
tion and parameterized iterator class, lets the programmer manipulate collections of ob-
jects of different types in a simple, efficient manner.

One of the simplest and most useful features facilitated by Generic is the runtime type
checking capability. The type_of and is_type_of virtual member functions provide this
kind of run-time type query for an object that is derived (at some point) from the COOL
Generic class. Type determination and function dispatch can become quite tedious,
however, if there are many types of objects. Ideally, each would be derived from a com-
mon base and include support for a virtual member function for each important opera-
tion that might be required. This is not always feasible, however, especially with a high
number of objects obtained from several sources. An alternate scheme similar to the one
mentioned above is the type_case macro, analogous to the C++ switch statement. It
gathers all possible type cases and allows the user to symbolically dispatch on the type
of object represented by the case statements. This automates some of the symbol collec-
tion and manipulation required with the earlier mechanism.

The class keyword is implemented as a COOL macro to add symbolic computing abili-
ties to class definitions. It takes a standard C++ class definition and, if the class contains
Generic somewhere in its inheritance hierarchy, it generates member functions for sup-
port of run time type checking and query. In addition, a symbol for the derived Generic
class type is added to the COOL global symbol package SYM. The actual code which is
expanded in a class definition and after a class definition is controlled by the classmac
macro.

The classmac macro provides two hooks as a customization point by user-defined mac-
ros. A combination of data members and member functions of a class definition are
passed as arguments to macros that can be changed or customized by the application
programmer. The COOL Generic class uses the data member hook to implement the
map_over_slots member function. There may be more than one classmac macro hook
specified by the programmer. COOL has several, and other user-defined macros are
simply chained together in a calling sequence ordered according to the order of defini-
tion. Each classmac macro defines how the class macro should expand the class defini-
tion. The class macro does not actually generate the code itself. This is defined in
user-modifiable header files that specify a classmac macro. For example, a general-
purpose mechanism that automatically creates accessor member functions to get and set
each data member can be created by defining a classmac macro that is attached to the
data member hook of the class macro. No changes to the COOL preprocessor are re-
quired.

Cool Methodology

14-4 COOL User’s Manual

Symbols and 14.5 A package provides a relatively isolated namespace for various COOL

Packages components called symbols. A symbol that is owned by a particular package is said to

be interned in that package. In general, the term interned means that a particular object
is uniquely identifiable in some context. When a symbol is interned, it becomes
uniquely identifiable by the symbol name within a namespace context. The package
system provides logical groupings of symbols supporting relationships established be-
tween named objects and the values they contain. Although the notion of symbols being
grouped into packages is fairly straightforward, the nature of the relationships that can
exist between packages and the way in which they establish a namespace can be quite
complex. COOL provides several kinds of macros to simplify the usage and manipula-
tion of symbols and packages.

A symbol is a data object that defines a relationship between a name, a package, a value,
and a property list. The name is a character string used to identify the symbol. Once a
name is established for a symbol, it may not be changed. The value field is used to refer
to some C++ object. Property lists are lists of alternating names and values. The prop-
erty list allows the programmer to associate supplemental attributes with a symbol.
Initially, the property list for a symbol is empty.

The Symbol and Package classes implement the fundamental COOL symbolic com-
puting support as standard C++ classes. The Symbol class implements the notion of a
symbol that has a name with an optional value and property list. Symbols are interned
into a package, which is merely a mechanism for establishing separate namespaces.
The Package class implements a package as a hash table of symbols and includes public
member functions for adding, retrieving, updating, and removing symbols.

COOL supports efficient and flexible symbolic computing by providing symbolic con-
stants and run time symbol objects. You can create symbolic constants at compile time
and dynamically create and manipulate symbol objects in a package at run time by using
any of several simple macros or by directly manipulating the objects. Symbols and
packages in COOL manage error message textual descriptions with translations, pro-
vide polymorphic extensions to C++ for object type and contents queries, and support
sophisticated symbolic computing normally unavailable in conventional languages.

Polymorphic 14.6 C++ version 2.0 as specified in the AT&T language reference manual

Management implements virtual member functions that delay the binding of an object to a specific

function implementation until run time. This delayed (or dynamic) binding is useful
where the type of object might be one of several kinds, all derived from some common
base class but requiring a specialized implementation of a function. The classic example
is that of a graphics editor where, given a base class graphic_object from which
square, circle, and triangle are derived, specialized virtual member functions to calcu-
late the area are provided. In such a system, a programmer can write a function that takes
a graphic_object argument and determine its area without knowing which of all the
possible kinds of graphical objects the argument really is.

This dynamic binding capability of C++, while powerful and providing greater flexibil-
ity than most other conventional programming languages, is still not enough for some
types of problems. Highly dynamic languages such as SmallTalk and Lisp allow the
programmer to delay almost all decisions until run time. In addition, facilities are often
present for querying an object at run time to determine its type or request a list of all
available member functions. These kinds of features are commonly used in many sym-
bolic computing and complex, knowledge-intensive operations management areas
tackled today.

Cool Methodology

14-3COOL User’s Manual

Regardless of the type of object a parameterized class is to manipulate, the structure and
organization of the class and the implementation of the member functions are the same
for every version of the class. For example, a programmer providing a vector class
knows that there will be several member functions such as insert, remove, print, sort,
and so on that apply to every version of the class. By parameterizing the arguments and
return values from the various member functions, the programmer provides only one
implementation of the vector class. The user of the class then specifies the type of vector
at compile time.

An important and useful type of parameterized template is known as a container class. A
container class is a special kind of parameterized class where you put objects of a par-
ticular type. For example, the Vector<Type>, List<Type>, and Hash_Ta-
ble<KType,Vtype> classes (discussed in Sections 6 and 7) are container classes because
they contain a set of programmer-defined data types. Since container classes are so
commonplace in many applications and programs, parameterized container classes pro-
vide a mechanism to maintain one source base for several versions of very useful data
structures. COOL supplies several common container class data structures that can be
used in many typical application scenarios.

Each of the COOL parameterized container classes support the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functions allow you to move through the collection
of objects in some order and manipulate the element value at that position. This might
be used, for example, in a function that takes a pointer to a generic object that is a type of
container object. The function can iterate through the elements in the container by using
the current position member functions without needing to know whether the object is a
vector, a list, or a queue.

In addition to this built-in current position mechanism, COOL provides support for
multiple iterators over the same class by using the Iterator<Type> class (discussed in
detail in Section 5). For example, a programmer may need to write a function that
moves through the elements of a container class and, at some point, needs to save the
current position and begin processing elements at another location. After a period of
time, the secondary processing ends, at which point flow of control returns to the previ-
ous stopping point. The current position is restored from the iterator object, and proc-
essing continues.

A programmer uses the COOL C++ Control program (CCC), instead of the normal CC
procedure, to control the compilation process. This program provides all of the capabili-
ties of the original CC program with additional support for the COOL preprocessor,
parameterized types, and the COOL macro language. CCC controls and invokes the
various components of the compilation process. In particular, it looks for command line
arguments specific to the parameterized template process and processes them accord-
ingly. Other options and arguments are passed on to the system C++ compiler control
program.

Cool Methodology

14-2 COOL User’s Manual

The COOL preprocessor is supplied as part of the library and is the implementation
point for all language and computing enhancements available in COOL. The draft-pro-
posed ANSI C standard indicates that extensions and changes to the language or fea-
tures implemented in a preprocessor or compiler should be made by using the #pragma
statement. The COOL preprocessor follows this recommendation and uses this for all
macro extensions.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. It complies with the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed previously, the preprocessor has several
new command line options to support C++ comments and includes file debugging aids.

The #pragma defmacro statement is implemented in the COOL C/C++ preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. The defmacro fa-
cility provides a way to execute arbitrary filter programs on C++ code fragments pass-
ing through the preprocessor. When a defmacro style macro name is found, the name
and contents up to the delimiter (including all matching {} [] () <> “” ‘’ and comments
found along the way) pipes onto the standard input stream of the indicated program or
filter procedure. The preprocessor scans the procedure’s standard output for further
processing. The expansion replaces the macro call and is passed onto the compiler for
parsing.

The implementation of a defmacro can be either external to the preprocessor (as in the
case of files and programs) or internal to the preprocessor. For example, the template,
declare, and implement macros that implement parameterized types are internal to the
preprocessor, providing a more efficient implementation. The defmacro facility first
searches for a file or program in the same search path used for include files. If a match is
not found in the preprocessor table, an internal preprocessor table is searched. If a
match is still not found, the error message is sent to the standard error stream: “Error:
Cannot open macro file [xxx]”, where xxx is the name as it appears in the source code.
The fundamental COOL macros are defined with defmacro in the header file <COOL/
misc.h> that is included in all COOL C++ source files.

Porting COOL to a new platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacro statement and also implements several
important macros internally for efficiency and performance considerations. In addition,
a powerful macro language that simplifies many library functions is available via the
MACRO keyword (discussed in detail in Section 10). MACRO implements an en-
hanced #define syntax that supports multiple-line, arbitrary-length, nested macros, and
preprocessor directives with positional, optional, optional keyword, required keyword,
rest, and body arguments. Many of the COOL features would be very difficult, if not
impossible, to implement without this enhanced macro language.

Parameterized 14.4 The development and successful deployment of application libraries

Templates such as COOL is made easier and more useful by a language feature called

parameterization. Parameterized templates allow a programmer to design and imple-
ment a class template without specifying the data type. The user customizes the tem-
plate to produce a specific class by indicating the type in a program. Several versions of
the same parameterized template (each with a different type) can exist in a single appli-
cation. Parameterized templates can be thought of as metaclasses in that only one source
base needs to be maintained to support numerous variations of a type of class.

14-1COOL User’s Manual

COOL METHODOLOGY

Introduction 14.1 The C++ Object-Oriented Library (COOL) is a collection of classes, templates,

and macros for use by C++ programmers writing complex applications. It raises the
level of abstraction and allows the programmer to concentrate on the problem domain,
not on implementing base data structures, macros, and classes. In addition to raising the
level of abstraction, COOL also provides a system-independent software platform on
top of which applications are built, since COOL encapsulates system-specific function-
ality such as date/time and exception handling. This section discusses the following top-
ics:

• Preprocessor and macros

• Parameterized templates

• Symbols and packages

• Polymorphic management

• Exception handling

• Coding style and conventions

• Class hierarchy

COOL is an ever changing and growing C++ class library. As such, some constraints
will be necessary in order to achieve compatible and seamless integration of new or
modified features. This section outlines the major technologies and conventions that
should be used and followed.

Requirements 14.2 This section discusses COOL methodology and should be used as an aid in un-

derstanding the COOL library, its organization, structure, and layout. It assumes you
have a working knowledge of C++. For more detailed information and examples on
each topic, you should refer to the appropriate section of this manual.

Preprocessor and 14.3 The COOL macro facility is an extension to the standard ANSI C

Macros macro preprocessing functions available with the #define statement. The COOL

preprocessor is a modified ANSI C preprocessor that allows a programmer to unobtru-
sively define powerful extensions to the C++ language.

This enhanced preprocessor is portable, compiler independent, and can execute arbi-
trary filter programs or macro expanders on C++ code fragments. Macros that support
parameterized templates are implementations of theoretical design papers published by
Bjarne Stroustrup. Other macros provide significant language features and enhanced
power for the programmer previously unavailable with conventional C++ implementa-
tions. It is important to note, however, that once a macro is expanded, the resulting code
is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

Printed on: Wed Apr 18 07:15:38 1990

Last saved on: Tue Apr 17 13:39:23 1990

Document: s14

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

